# Data Science: Linear Regression - October 2023

Learn how to use R to implement linear regression, one of the most common statistical modeling approaches in data science.

Learn how to use R to implement linear regression, one of the most common statistical modeling approaches in data science.

Image

Time Commitment

1 - 2 hours per week

Pace

Self-paced

Subject

Course Language

English

English

Introductory

Platform

edX

How linear regression was originally developed by Galton

What is confounding and how to detect it

How to examine the relationships between variables by implementing linear regression in R

Linear regression is commonly used to quantify the relationship between two or more variables. It is also used to adjust for confounding. This course, part of our Professional Certificate Program in Data Science, covers how to implement linear regression and adjust for confounding in practice using R.

In data science applications, it is very common to be interested in the relationship between two or more variables. The motivating case study we examine in this course relates to the data-driven approach used to construct baseball teams described in Moneyball. We will try to determine which measured outcomes best predict baseball runs by using linear regression.

We will also examine confounding, where extraneous variables affect the relationship between two or more other variables, leading to spurious associations. Linear regression is a powerful technique for removing confounders, but it is not a magical process. It is essential to understand when it is appropriate to use, and this course will teach you when to apply this technique.

Online

Keep your projects organized and produce reproducible reports using GitHub, git, Unix/Linux, and RStudio.

Price

Free^{*}

Duration

8 weeks long

Registration Deadline

Available now

Online

Price

Free^{*}

Duration

8 weeks long

Registration Deadline

Available now

Online

Price

Free^{*}

Registration Deadline

Opens Oct 18