What you'll learn

  • The basics of machine learning

  • How to perform cross-validation to avoid overtraining

  • Several popular machine learning algorithms

  • How to build a recommendation system

  • What is regularization and why it is useful

Course description

Perhaps the most popular data science methodologies come from machine learning. What distinguishes machine learning from other computer guided decision processes is that it builds prediction algorithms using data. Some of the most popular products that use machine learning include the handwriting readers implemented by the postal service, speech recognition, movie recommendation systems, and spam detectors.

In this course, part of our Professional Certificate Program in Data Science, you will learn popular machine learning algorithms, principal component analysis, and regularization by building a movie recommendation system.

You will learn about training data, and how to use a set of data to discover potentially predictive relationships. As you build the movie recommendation system, you will learn how to train algorithms using training data so you can predict the outcome for future datasets. You will also learn about overtraining and techniques to avoid it such as cross-validation. All of these skills are fundamental to machine learning.

Instructors

You may also like

Online

Learn how to use decision trees, the foundational algorithm for your understanding of machine learning and artificial intelligence.

Price
Free*
Duration
6 weeks long
Registration Deadline
Available now
Online

Focusing on the basics of machine learning and embedded systems, such as smartphones, this course will introduce you to the “language” of TinyML.

Price
Free*
Duration
5 weeks long
Registration Deadline
Available now