What you'll learn

  • Describe key concepts of acid-base chemistry and equilibrium reactions involving acids and bases
  • Understand the significance of electrochemistry, how it relates to other fields of science, and how it is applied in real life
  • Understand what it means for an element to be "oxidized" or "reduced"
  • Identify the differences in efficiency between renewable primary energy from electrochemical energy sources with primarily fossil fuel-based energy ones
  • Describe the reactions occurring in an electrochemical (voltaic) cell
  • Identify how different types of batteries differ in their energy storage efficiency

Course description

What is the chemistry and mechanics behind an electric car versus a gas-powered car — and why do you feel a difference driving them? The discipline of electrochemistry is not new, but it has regained prominence due to the emergence of energy production, energy storage, and technological innovations driven by both science and public policy. Given the rise of global energy demand, research and inventions aim to meet these challenges. ****

To understand electrochemistry, you will combine the concepts of Gibbs Free Energy, electron flow, and chemical transformation. In this course, you will explore key concepts of acid-base reactions and their relation to chemical equilibrium. You will learn the significance of electrochemistry, understanding how electrical, chemical, and mechanical energy are linked.

By the end of the course, you will be able to identify differences in efficiencies between renewable energy sources and fossil fuel-based ones, including which battery types are leading the transition away from fossil fuels.

 

Instructor

  • Philip S. Weld Professor of Chemistry at Harvard University
Enroll now.
Learn More